ET4350 Applied Convex Optimization Lecture 3

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$
 $h_i(x) = 0$, $i = 1, \dots, p$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^{\star} = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$ if problem is unbounded below

Optimal and locally optimal points

- x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints
- a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- x is **locally optimal** if there is an R > 0 such that x is optimal for

minimize (over z)
$$f_0(z)$$

subject to $f_i(z) \le 0, \quad i = 1, \dots, m, \quad h_i(z) = 0, \quad i = 1, \dots, p$
 $\|z - x\|_2 \le R$

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- $\bullet\,$ we call ${\cal D}$ the domain of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

subject to
$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

 $h_i(x) = 0, \quad i = 1, \dots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

$$\begin{array}{ll} \mbox{minimize} & 0\\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m\\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $p^{\star} = 0$ if constraints are feasible; any feasible x is optimal
- $p^{\star} = \infty$ if constraints are infeasible

.....

Convex optimization problem

standard form convex optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & a_i^T x = b_i, \quad i=1,\ldots,p \end{array}$$

- f_0, f_1, \ldots, f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

important property: feasible set of a convex optimization problem is convex

example

$$\begin{array}{ll} \mbox{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \mbox{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f₁ is not convex, h₁ is not affine
- equivalent (but not identical) to the convex problem

$$\begin{array}{ll} \mbox{minimize} & x_1^2+x_2^2 \\ \mbox{subject to} & x_1 \leq 0 \\ & x_1+x_2=0 \end{array}$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal **proof**: suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$

 \boldsymbol{x} locally optimal means there is an R>0 such that

z feasible, $\|z - x\|_2 \leq R \implies f_0(z) \geq f_0(x)$

consider
$$z = heta y + (1 - heta) x$$
 with $heta = R/(2\|y - x\|_2)$

•
$$||y - x||_2 > R$$
, so $0 < \theta < 1/2$

- z is a convex combination of two feasible points, hence also feasible
- $||z x||_2 = R/2$ and

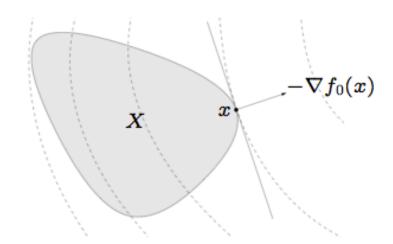
$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x)$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

 $abla f_0(x)^T(y-x) \geq 0$ for all feasible y



if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

unconstrained problem: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad
abla f_0(x) = 0$$

equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a ν such that

 $x \in \operatorname{\mathbf{dom}} f_0, \qquad Ax = b, \qquad
abla f_0(x) + A^T \nu = 0$

minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

x is optimal if and only if

$$x\in \operatorname{\mathbf{dom}} f_0, \qquad x\succeq 0, \qquad \left\{ egin{array}{cc}
abla f_0(x)_i\geq 0 & x_i=0 \
abla f_0(x)_i=0 & x_i>0 \end{array}
ight.$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$, $i = 1, \dots, m$
 $Ax = b$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } z) & f_0(Fz+x_0) \\ \text{subject to} & f_i(Fz+x_0) \leq 0, \quad i=1,\ldots,m \end{array}$$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0$$
 for some z

• introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, y_i) & f_0(y_0) \\ \text{subject to} & f_i(y_i) \leq 0, \quad i=1,\ldots,m \\ & y_i=A_ix+b_i, \quad i=0,1,\ldots,m \end{array}$$

• introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, s) & f_0(x) \\ \text{subject to} & a_i^T x + s_i = b_i, \quad i = 1, \dots, m \\ & s_i \geq 0, \quad i = 1, \dots m \end{array}$$

• epigraph form: standard form convex problem is equivalent to

minimizing over some variables

$$\begin{array}{ll} \mbox{minimize} & f_0(x_1,x_2) \\ \mbox{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

is equivalent to

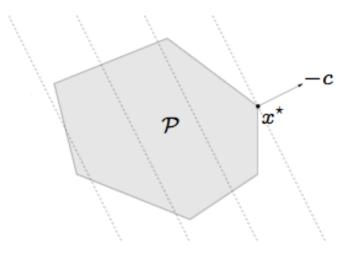
$$\begin{array}{ll} \mathsf{minimize} & \widetilde{f}_0(x_1) \\ \mathsf{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

where $ilde{f}_0(x_1) = \inf_{x_2} f_0(x_1,x_2)$

Linear program (LP)

 $\begin{array}{ll} \mbox{minimize} & c^T x + d \\ \mbox{subject to} & G x \preceq h \\ & A x = b \end{array}$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

minimize $c^T x$ subject to $Ax \succeq b$, $x \succeq 0$

piecewise-linear minimization

minimize
$$\max_{i=1,...,m}(a_i^T x + b_i)$$

equivalent to an LP

$$\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & a_i^T x + b_i \leq t, \quad i = 1, \ldots, m \end{array}$$

Chebyshev center of a polyhedron

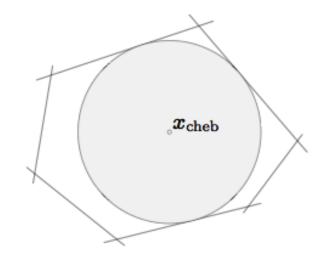
Chebyshev center of

$$\mathcal{P} = \{x \mid a_i^T x \leq b_i, \ i = 1, \dots, m\}$$

is center of largest inscribed ball

 $\mathcal{B} = \{x_c + u \mid \|u\|_2 \le r\}$

•
$$a_i^T x \leq b_i$$
 for all $x \in \mathcal{B}$ if and only if



$$\sup\{a_i^T(x_c+u) \mid \|u\|_2 \le r\} = a_i^T x_c + r \|a_i\|_2 \le b_i$$

• hence, x_c , r can be determined by solving the LP

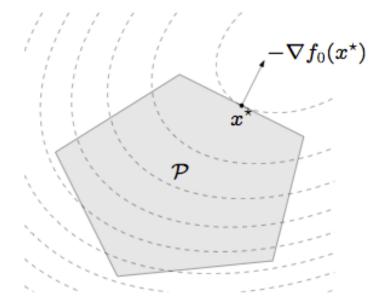
maximize
$$r$$

subject to $a_i^T x_c + r \|a_i\|_2 \le b_i$, $i = 1, \dots, m$

Quadratic program (QP)

 $\begin{array}{ll} \mbox{minimize} & (1/2)x^TPx + q^Tx + r \\ \mbox{subject to} & Gx \preceq h \\ & Ax = b \end{array}$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



Examples

least-squares

minimize $||Ax - b||_2^2$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \preceq x \preceq u$

linear program with random cost

$$\begin{array}{ll} \text{minimize} & \bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} \, c^T x + \gamma \, \mathbf{var}(c^T x) \\ \text{subject to} & G x \preceq h, \quad A x = b \end{array}$$

- c is random vector with mean $ar{c}$ and covariance Σ
- hence, $c^T x$ is random variable with mean $ar{c}^T x$ and variance $x^T \Sigma x$
- γ > 0 is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

$$\begin{array}{ll} \text{minimize} & (1/2)x^TP_0x + q_0^Tx + r_0 \\ \text{subject to} & (1/2)x^TP_ix + q_i^Tx + r_i \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

- $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

$$\begin{array}{ll} \mbox{minimize} & f^T x \\ \mbox{subject to} & \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \dots, m \\ & F x = g \end{array}$$

 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$

• inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$

- for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, \dots, m$,

there can be uncertainty in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

• deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize $c^T x$ subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m$,

- stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta$, $i = 1, \dots, m$

deterministic approach via SOCP

• choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbf{R}^n, \quad P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

robust LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$

(follows from $\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$)

stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i $(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i))$
- $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$; hence

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(rac{b_i - ar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}
ight)$$

where $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$ is CDF of $\mathcal{N}(0,1)$

robust LP

minimize $c^T x$ subject to $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta$, $i = 1, \dots, m$,

with $\eta \ge 1/2$, is equivalent to the SOCP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & \bar{a}_i^T x + \Phi^{-1}(\eta) \| \Sigma_i^{1/2} x \|_2 \leq b_i, \quad i=1,\ldots,m \end{array}$$

Semidefinite program (SDP)

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \preceq 0 \\ & Ax = b \end{array}$$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \preceq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \preceq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$ SDP: minimize $c^T x$ subject to $Ax \leq b$ subject to $\operatorname{diag}(Ax - b) \leq 0$

(note different interpretation of generalized inequality \preceq)

SOCP and equivalent SDP

Eigenvalue minimization

minimize $\lambda_{\max}(A(x))$

where $A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$ (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & A(x) \preceq tI \end{array}$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

 $\lambda_{\max}(A) \leq t \iff A \preceq tI$